SiO2/H2SO4: An Efficient Catalytic System for Solvent-free 1, 5-benzodiazepines Synthesis

نویسندگان

  • Mohammad Reza Shushizadeh
  • Narges Dalband
چکیده

BACKGROUND 1, 5-Benzodiazepines have been investigated extensively by organic chemists due to their medicinal and pharmacological properties. These compounds are synthesized by condensation of o-phenylenediamines with carbonyl compounds in the presence of acid catalysts. OBJECTIVES During our studies on the application of silica resin with acid functional moieties, we found that SiO2/H2SO4 mixture is a simple and efficient catalyst for this method under microwave irradiation. MATERIALS AND METHODS The reaction was carried out simply by grinding SiO2/H2SO4 mixture with o-phenylenediamine, and ketone in the mortar; then the mixture was poured out into a sealed flask. Subsequently, it was irradiated in a microwave oven. RESULTS In this method a series of cyclic and acyclic ketones underwent above conversion to form corresponding 1, 5-benzodiazepines. CONCLUSIONS In conclusion, this method is a simple, rapid, and high yielding reaction (78-95%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green Multicomponent Synthesis of Benzodiazepines in the Presence of CuFe2O4 as an Efficient Magnetically Recyclable Nanocatalyst under Solvent-Free Ball-Milling Conditions at Room Temperature

In this work, an efficient and green procedure for the synthesis of various substituted 1,5-benzodiazepine derivatives via a one-pot three-component catalytic reaction has been described. The reaction was conducted between o-phenylenediamine, dimedone and aldehyde derivatives in the presence of CuFe2O4 nanoparticles as a magnetic heterogeneous nanocatalyst under ball-milling conditions at room ...

متن کامل

Nano SiO2/H2SO4 as catalyst for the Beckmann rearrangement and deoximation of aldoximes

Nano silica-H2SO4 is an efficient and mild catalysis system for the regeneration of aldehyde from aldoximes. Ketoximes are converted to amides by Beckmann rearrangement in the presence of nano silica-H2SO4. The reactions are carried out in solvent-free conditions under microwave irradiation (600 W) within 50-120 sec in good yields.

متن کامل

Nano SiO2/H2SO4 as catalyst for the Beckmann rearrangement and deoximation of aldoximes

Nano silica-H2SO4 is an efficient and mild catalysis system for the regeneration of aldehyde from aldoximes. Ketoximes are converted to amides by Beckmann rearrangement in the presence of nano silica-H2SO4. The reactions are carried out in solvent-free conditions under microwave irradiation (600 W) within 50-120 sec in good yields.

متن کامل

Nano-SbCl5/SiO2 as an Efficient Catalyst for One-Pot Synthesis of 2, 4, 5-Trisubstituted Imidazoles Under Solvent- Free Condition

A general synthetic route to the synthesis of imidazoles has been developed using nano SbCl5/SiO2 under solvent-free conditions. The multi-component reactions of aldehydes, benzil and ammonium acetate were carried out to afford some trisubstituted imidazole derivatives. This method provides several advantages like simple work-up, environmentally benign, and shorter reaction times along wi...

متن کامل

Fe3O4@SiO2-SO3H as a recyclable heterogeneous nanomagnetic catalyst for the one-pot synthesis of substituted quinolines via Friedländer heteroannulation under solvent-free conditions

An efficient method has been developed for the Friedländer synthesis of substituted quinolines through a condensation reaction of 2-aminoaryl ketones with α-methylene ketones in the presence of a catalytic amount of nano Fe3O4@SiO2-SO3H under solvent-free conditions at 110 °C. The reactions are completed in short times, and the products are obtained in good to excellent yields. The results reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012